Patient Proteomic Data and Mouse Model Reinforce the Proinflammatory Role of CCL24 in Cholestatic Disease

Raanan Greenman1, Tom Snir1, Revital Aricha1, Douglas Thorburn2, Massimo Pinzani3, John Lawler4, Ilan Vaknin1, Matthew Frankel1
1Chemomab Therapeutics, Israel & United States
2Royal Free London NHS Foundation Trust, United Kingdom
3UCL Institute of Immunity & Transplantation, United Kingdom

INTRODUCTION

Primary Sclerosing Cholangitis (PSC) is a chronic liver disease that is marked by the presence of a damaged periportal space. In this space, a complex interplay occurs between immune cells, reactive bile epithelial cells and fibroblasts, resulting in elevated levels of cytokines, chemokines, and other secreted factors that contribute to the inflammatory process. Specifically, the chemokine CCL24 has been implicated in driving these self-exploding mechanisms in fibrotic-inflammatory diseases. Preclinical studies have demonstrated that blocking CCL24 can attenuate the progression of PSC in animal models. Specifically, monocytes and neutrophils are major players in PSC pathophysiology, and studies using in-vivo models for immune cell trafficking have shown that the chemokine CCL24 plays a role in recruiting these immune cells.

AIM

We aim to study the role of CCL24, a chemokine that promotes immune cell trafficking and activation as well as pro-fibrotic activities at inflammatory periportal areas in PSC pathophysiology.

• We examined the effect of CCL24 blockade using CM-101, a CCL24 neutralizing monoclonal antibody, on the trafficking of immune cells to the diseased biliary area in ANIT induced cholestasis model.

• We explored the association of CCL24 with biological pathways that are related to immune-cell chemotaxis in patients’ serum.

METHOD

• Chronic naphthylisothiocyanate (ANIT)-induced cholestasis mouse model was employed. Mice were fed with an ANIT diet (0.05%) for 4 weeks and treated twice a week with either 5 mg/kg CM-101 or a vehicle control during weeks 2 through 4. Liver inflammation was evaluated by immunohistochemistry staining for various immune markers. Liver fibrosis and biliary hyperplasia were evaluated by hematoxylin & eosin (H&E) and Pan-Ck staining, respectively.

• For human serum proteomics, sera from healthy controls (n = 30) and patients with PSC (n = 49) were evaluated for expression of immune-migration related proteins using the Olink proximity extension assay. Demographics and enhanced liver fibrosis (ELF) scores were captured. Average expression of proteins related to pathways associated with immune cell migration was compared between: (1) healthy controls and patients with PSC, (2) high and low serum levels of CCL24 (stratified by the mean) within patients with PSC, and (3) high and low ELF score (stratified by a score of 8.4) within patients with PSC.

RESULTS

ANIT-induced cholestasis animal model

CCL24 blockade with CM-101 mAb reduces liver fibrosis and biliary hyperplasia, and neutrophil and macrophage accumulation in the peribiliary area

CM-101 treatment reduces liver fibrosis and biliary hyperplasia

CONCLUSIONS

• CM-101 demonstrated an anti-inflammatory effect by interfering with migration of monocytes and neutrophils to the damaged biliary area in a PSC animal model.

• CM-101 reduced fibrosis and biliary hyperplasia in a PSC animal model.

• CCL24 induced recruitment of monocytes and neutrophils, which is associated with disease severity in patients with PSC.

• CCL24 is a promising therapeutic target for PSC treatment. CM-101 is currently being tested in a Phase 2 study in PSC patients.

ACKNOWLEDGEMENTS

We would like to thank Dr. Francesco Baffioli, Dr. Stephen Barclay, Dr. Deepak Joshi, Dr. Palak Thirani, Dr. Matthew Crapar, Dr. George Mills, Dr. Emma Cuber, Dr. Ella Veitsman, Prof. Ani Nemer, Prof. ES Zuckerman, Prof. Haim Shiro, Dr. Yuu Luria, Dr. Maria Carlota Londres Hurtado and all patients for data contribution to this research.

CONTACT INFORMATION

Raanan.Greeman@Chemomab.com